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Higher-order level correlations in integrable quantum systems 

J J M Verbaarschoti 
Department of Physics, Loomis Laboratory, University of Illinois at Urbana-Champaign, 
1110 W Green Street, Urbana, 11~61801, USA 

Received 28 January 1987 

Abstract. In this paper we study the second, third and fourth cumulants of the distribution 
of the number of energy levels in an  interval containing ti levels on an  average. The 
distribution function, which also depends on the distance N (measured in units of average 
level spacings) above the ground state, can be obtained either from the exact quantum 
levels or from the semiclassical approximation to the level density. Either of the two 
methods yields the same values for the cumulants.  In two limits the cumulants have been 
obtained analytically. First, for small ti the functional dependence of the cumulants is 
obtained using generalisations of Berry’s semiclassical sum rule for the two-point function. 
We find that in this limit the first four cumulants are  equal to the average number of levels 
ti in the interval. Second, for larger values of ti the functional dependence can be obtained 
by taking into account only the slowly oscillating contributions to the cumulants of the 
semiclassical level density. For the second cumulant we obtain an  analytical expression 
when A >> 1. We find that the correction term to A is proportional t o  - t i ’ /d N (this correction 
does not show u p  in the A, statistic). This cumulant saturates at a value of -\IN at a 
scale of ti - V’ N.  Analytical expressions for the third and  fourth cumulants are  obtained 
only for distances larger than ti >> NI’, and  A >> N”’, respectively. After an initial rise to 
far above the Poisson limit their values oscillate with a frequency and  amplitude of -\;N. 

1. Introduction 

In generic Hamiltonian systems the solutions of the equations of motion show an 
enormous richness in structure as we increase the interaction between the degrees of 
freedom (see, e.g., Lichtenberg and Lieberman 1983). This inspired many authors to 
explore quantum systems as a function of the interaction between the degrees of 
freedom. In recent years most work has been devoted to the study of the eigenvalues 
and eigenfunctions of time-independent Hamiltonian systems with two degrees of 
freedom and to the study of systems with one degree of freedom driven by a time- 
dependent external force. We will only discuss the investigation of eigenvalues and 
dispose of the other topics with the remark that many interesting results have been 
obtained (see, for example, Casati et a1 1986, Chang and Shi 1985, Feingold e? a1 1985, 
Fishman et a1 1982, Heller 1984, Israilev 1986, Jose and Cordery 1986, KuS et a1 1986, 
Shapiro and Goelman 1984, Blumel and Smilansky 1985, Seligman et a1 1986). 

Most studies of the eigenvalues involve their statistical analysis. The most important 
results have been discovered by numerical investigations of systems with two degrees 
of freedom. They can be summarised as follows. For integrable systems the eigenvalues 
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are essentially distributed as independent random variables, whereas for classically 
chaotic systems the eigenvalues are distributed as the eigenvalues of the invariant 
random matrix ensembles. There is a smooth transition between the integrable and  
the completely chaotic regime (see Berry 1981, Berry and Robnik 1986, Bohigas et a1 
1984, Delande and Gay 1986, Haller et a1 1984, Ishikawa and Yukawa 1985, Robnik 
and Berry 1986, Seligman et a1 1985a, b, Seligman and Verbaarschot 1985a, b). 
Recently, similar observations have been made for quasi-energies (Israilev 1986, JosC 
and Cordery 1986, KuS et a1 1986). For the integrable case we want to mention the 
following generic deviations from the general result. First, the eigenvalues are dis- 
tributed as independent random variables only for distances (measured in units of the 
average level spacing) short compared to the square root of the number of levels above 
the ground state. For distances large compared to the square root of the number of 
levels above the ground state the fluctuations of the eigenvalues saturate (see Seligman 
et a1 198513, Seligman and  Verbaarschot 1986, Casati et ai 1985 and  Berry 1985). 
Second, when the potential has a strong harmonic term the distribution of the eigen- 
values becomes very complicated. For a discussion of the ‘harmonic oscillator anomaly’ 
we refer to Berry and Tabor (1976) and Bohigas et ai (1983). 

Most spectra have been analysed by means of the nearest-neighbour spacing 
distribution and the A3 statistic. The latter statistic is a measure for the average deviation 
of the number of levels in an  interval containing a given average number of levels. 
The average can either refer to an average over the spectrum or to an  average over 
the ensemble or to a combination of both. Recently, several authors have employed 
other statistics to analyse spectra (see Bohigas et a1 1985 and Roman et a1 1986). We 
mention the cumulants of the distribution of the number of levels in a interval containing 
a given number of levels on an average. The second cumulant (also called number 
variance) is closely related to the A3 statistic but does yield some extra information. 
The third and fourth cumulant provide us with another independent test for the 
conjectures put forward by the aforementioned numerical work. It is generally believed 
that in the integrable case as well, the third and fourth moments tend to the Poisson 
limit for distances small compared to the square root of the number of levels above 
the ground state. However, it is not known in which way the saturation of the 
fluctuations manifests itself in these correlation functions. The investigation of this 
question is the main objective of this paper. 

The theoretical understanding of numerical studies in terms of the semiclassical 
expansion for the level density is mainly due to the work of Berry (1985). For integrable 
systems he was able to explain the saturation of the fluctuations. For classically chaotic 
systems he succeeded in deriving the correct logarithmic dependence of the A3 statistic. 
As in our previous paper on the A3 statistic, we will base this work on the ideas put 
forward by Berry (1985). We will carry out our investigations on scaling integrable 
systems (i.e. integrable systems with a homogeneous polynomial as a potential). This 
has the advantage that many calculations can be carried out explicitly, both analytically 
and numerically. 

The organisation of this paper is follows. In § 2 we review the results for the 
semiclassical level density of scale invariant systems, as obtained in earlier works. This 
fixes our notation and allows a concise formulation in the following sections. In this 
section we also explain that the number variance contains more information than the 
A3 statistic. In § 3 we study the short-range behaviour of the cumulants of the 
distribution of the number of levels. We will find new sum rules for the expansion 
coefficients and  the phases of the periodic orbit sum for the level density. In § 4 we 
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give analytical expressions for the long-range behaviour of the cumulants of the 
distribution of the number of levels. Numerical results are presented in § 5 and 
concluding remarks are made in § 6. 

2. The semiclassical level density 

In this section we give the semiclassical expansions for the level density of a two- 
dimensional integrable scaling system. For the derivations we refer to Seligman and 
Verbaarschot ( 1987). Two-dimensional integrable scaling systems are defined by the 
Hamiltonian (see Landau and Lifshitz 1969) 

(2.1) 

where the x, are the coordinates and the p, are the momenta. The y, are arbitrary 
constants. In the W K B  approximation (which appears to be extremely accurate) the 
energy levels are given by (see Seligman and Verbaarschot 1987) 

H = i p f  + $pi + yIx:' + y2x:' 

E, ,=cy (m+;)P+p(n+$)~  (2.2) 

where p is related to the order of the homogeneous polynomial by 

p = 2 9 / ( 9 +  1).  (2.3) 

The use of the levels E,, in (2.2) instead of the exact quantum mechanical levels does 
not affect any of our results (see Seligman and Verbaarschot (1987) for a discussion 
of this point). Since multiplication of cy and p by the same constant leads to a trivial 
rescaling of the levels the product of a and p can be chosen to be equal to 1. Via a 
Poisson resummation and a stationary phase approximation (see Berry and Mount 
1972, Berry and Tabor 1977a, b, Richens and Berry 1982, Seligman and Verbaarschot 
1987) it is possible to derive the semiclassical periodic orbit sum for the level density 
from equation (2.2). In terms of the integrated level density the result is given by 

NT(E)=  N ( E ) + N p ( E ) + N , , , ( N ( E ) )  (2.4) 

where 

Np( E )  = a'"' 2 [ E  - a (  k + 5 )  I P ] I l P  

k 

(2.5a) 

(2.56) 

N 

No,,(N) = d N  N-1'4 E' A,,, exp[i s g n ( M , ) ( m S ,  -:n-)]. ( 2 . 5 ~ )  

The sum in equation (2.56) is over all k and 1 larger than or equal to zero for which 
the expression below the power l / p  is positive. The argument of No,, is the 'average' 
number of levels above the ground state. The primed summation in ( 2 . 5 ~ )  is defined 
as the sum over all MI and  M 2  different from zero and with equal sign. The amplitudes 

L U 
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A+, and the actions S, are given by 

The first term in (2.4) is the Thomas-Fermi approximation to the level density (this 
term contains the contributions of the periodic orbits of length zero). For a billiard 
the second term gives rise to the perimeter term in the level density (this term contains 
the contributions of the periodic orbits of length zero in one and only one degree of 
freedom). The last term in (2.4) is the genuinely oscillating contribution (both M I  and 
M 2  are different from zero). 

In  our numerical analysis we compare correlation functions obtained from the level 
sequence E,,,,, (see equation (2.2)) and correlation functions obtained from No,,. In  
order to make the comparison unambiguous we have to normalise the level sequence 
to unit level spacing by using the slowly varying terms in the level density. The 
normalised sequence E b,, can be obtained from E,, by the following prescription: 

where p and pp are the level densities corresponding to ( 2 . 5 ~ )  and (2.5b). 
The statistics we will study are the first four cumulants C p (  i, N ) .  They are defined 

as the expectation values of the cumulants of the distribution of the number of levels 
A”, ( i )  in an interval of length i i :  

X p ( i ,  N )  = (“.1.”% (ti))‘ (2.8) 
where ( ) c  denotes a local average over an interval in the spectrum that is small 
compared to the total number of levels above the ground state and which is large 
compared to i. The subscript c (from connected) means that all correlations that 
factorise into products of lower-order moments have been subtracted. When the 
eigenvalues are uncorrelated (the Poisson limit) the distribution of . l , , ( i )  is given by 
( i  ’ \ “ “ / w + n N ( i i ) ! )  e x p ( - i )  (fol a level sequence with average level density equal to 
unity). In  this case all cumulants are equal to ii. 

The A, statistic is related to the number variance by (Pandey 1979, Brody et a /  1982) 

A,( i )  == ds( i ’ - 2 i ’ ~ +  s ’ )C~(S ,  N ) .  (2.9) n I: 
Under this transformation a monomial s p  I S  transformed as 

(2.10) s p  + i i p  2 - P  
(P + I)(p +2) (p  + 4 )  

from which we conclude that the integral transform (2.9) has a non-trivial kernel. The 
term in L( s, N )  proportional to s’ will not be present in the A,(  i )  statistic! Moreover, 
all higher-order terms are suppressed by large numerical factors. Consequently the 
number variance contains more information than the A ,  statistic. 

For a further discussion of the cumulants and their relation to level correlation 
functions we refer to Brody er a1 (1982) and Pandey (1979). Because the pth cumulant 
is a p-point measure we will also refer to i t  as a p-point function. 
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The distribution of N N  ( t i )  can be obtained from the level sequence E hn by counting 
the number of levels in consecutive intervals of length ti. A semiclassical approximation 
for X,( ti) is obtained by the evaluation of the difference No,,( N + ti) - No,,( N ) .  We 
will assume that ti is much smaller than N (the number of levels the interval lies above 
the ground state). This is a necessary condition for spectral averaging. In this case 
the square root occurring in the exponent of the integrand of ( 2 . 5 ~ )  can be linearised. 
This renders the integration trivial. The result is given by 

where A M  and Sw are defined in ( 2 . 6 ) .  N is the number of levels above the ground 
state given by the sum N ( E ) + N , ( E ) .  To relate ti to an energy difference it suffices 
to use p.  The density pp is O( E-””-’) smaller than the leading term p.  

Without the oscillating term the summation over M in ( 2 . 1 1 )  diverges as / M / ” ’ .  
Therefore we can expect non-neglible contributions from large values of IM/. Because 
important contributions stem from a region with Sn, - 2 ~ J r ; f / r i  this plays a role for 
small values of ti in particular. In  practice the numerical evaluation of ( 2 . 9 )  will be 
inhibited for small values of ti. 

Higher-order terms in the stationary phase approximation for post d o  not contribute 
to N,,(ti, N). In  the first place, they are of higher order in N-”’. In the second 
place, they converge better with respect t o  the summation over M .  

In  the next section we will study the second, third and fourth cumulants of N (  ri). 

3. Short-range behaviour of the number moments 

Berry ( 1 9 8 5 )  was able to derive the short-range behaviour of the A3 statistic by using 
a semiclassical sum rule. Analogous sum rules are needed to obtain the short-range 
behaviour of the number moments. The sum rules express the fact that for very short 
distances the only correlations are self-correlations. 

The sum rules can be derived with the help of the trace of the Green function G,. 
In  the diagonal representation G, is given by 

where the Ek are the eigenvalues of the Hamiltonian and 7 is an infinitesimal quantity. 
For the eigenvalues given in ( 2 . 2 )  the sum in (3.1) is divergent. However, the fluctuating 
part of the Green function (i.e. G,(E) - (G , (€ ) ) , )  is finite. Below the subscript c 
indicates that we consider this combination only. We first consider the correlation of 
the Green functions for finite but very small values of 7. For the two-point function 
we consider the product 

where ( ) c  is defined below equation ( 2 . 8 )  [e.g. the local average may be defined as 
(f) = (1/ 7) J dEf( E )T / (  E’+ r2)]. Products in which both factors have their poles on 
the same side of the real axis are uninteresting; the average over E can be factorised 
in averages over the single factors? and we will find no connected contributions. By 

t (G,(E)G,(E)) = ( l / ? r ) jdE  G,( E)G,(E)I‘(E+iT)-’( E -ir)-’ = G ( E  - i r ) G ( €  - iT)  
= (G,,(E))(G,(E)). 
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using similar arguments we find that in equation (3.2) the terms with k ,  Z k2 d o  not 
contribute to the connected part of the average when v,-O. The only non-trivial 
correlations arise from terms with k ,  = k2 and with the poles located on opposite sides 
of the real axis. After making a partial fractions decomposition for the diagonal terms 
in the summation in (3.2) we obtain 

(G,,(E)G-?JE))c = 2+/(771+ 772) (3.3) 

p =  - ( l / r )  Im(G,). (3.4) 

where the average level density p is given by 

For the three-point function we have to evaluate the product of three Green 
functions. As in the case of the two-point function, we find non-trivial contributions 
for 77, += 0 only when the poles are not on the same side of the real axis. We choose 
the location of the poles as follows ( 771 > 0): 

When 77, are small compared to the average level spacing only the terms with k, = k,  = k,  
are important. After making two consecutive partial fractions decompositions we obtain 

A similar identity can be derived for all higher-order correlation functions. We 
only quote the result for the four-point function. In this case we find three essentially 
different configurations for the location of the poles in the complex plane. In the first 
group all the the poles are on the same side of the real axis. Such terms do  not yield 
connected contributions. The second group contains terms with three poles on one 
side and one pole on the other side of the real axis. The third group contains terms 
with two poles on either side of the real axis. Depending on the signs preceding the 
iv ,  we find the following result for the four-point function: 

We want to stress that the three- and four-point functions depend only on the average 
level density and the 7,. 

Berry (1985) has given higher-order sum rules in terms of the level density. Since 
they involve particular combinations of the Green functions (see (3.4)), they constitute 
a special case of the sum rules presented in this work. 

On the other hand, we can calculate the three- and four-point functions from the 
semiclassical approximations for the Green functions. The semiclassical expansion 
for G, can be derived in the standard Feynman path formalism for non-relativistic 
quantum mechanics. The result which is an  analytic continuation of post is given by 
(see Berry and Mount 1972, Gutzwiller 1967, 1970, 1971) 
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The plus sign in the above summation indicates that we only sum over positive values 
of M ,  and M 2 .  By using (3.8) to evaluate the two-point function we obtain 

(G, (E)G- , (E)) ,= (~TD)’N-’ ’~  lox d S 4 A S )  exp[- (v ,+  v2)SD1 (3.9) 

where 

(3.10) 

In  the slowly varying terms we have put SKI = SK2.  By equating (3.3) and (3.9) and 
inverting the Laplace transform we obtain Berry’s semiclassical sum rule (in a slightly 
different notation): 

& ( S ) +  NI” l 2 T  S + W .  (3.11) 

By using (2.11) for the number of levels and using the definition of & we obtain for 
the two-point function 

+ i i  ii --* 0. (3.12) 

In deriving (3.12) we have put SKI = SK2 in the slowly oscillating terms. By using the 
integral transform in (2.9) we recover the result of Berry (1985) for the Ai statistic. 

Next we consider the three-point function. As for the two-point function, the main 
contribution stems from the terms for which the fast-oscillating phases approximately 
cancel. We will use this to simplify the slowly varying factors. We obtain the following 
result for the three-point function: 

( G,,( E 1 G- ,>( E 1 G- ,,( E ) ) c  

(3.13) 

where the function 43(S, T )  is defined as 

x e x p ( i m ( S K ,  -SK2-SK, )+ i~ i ) .  (3.14) 

By inversion of the Laplace transform we obtain the behaviour of 4 3 ( S ,  T )  for large 
values of S and T :  

&(S, T )  + N’I4/4.ir2 S, T + w .  (3.15) 

This result is a generalisation of Berry’s semiclassical rule for the two-point function, 
It shows that there are intimate correlations between the amplitudes AM and the phases 
SM . 
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With the help of the  sum rule (3.15) we are able to evaluate the short-range behaviour 
of the three-point function. By using equation (2.11) we obtain 

(N:m(ti, N)),=24N"4 1' A K I A K 2 A K 3  i -3  

K I K ~ K ,  S K , S K 2 S K 3  

e x p [ i ~ ( S , , - S K 2 - S , , + a r r ) ]  exp i- [ ( 2 J N  - l ]  

x [ exp ( -I- . & &?) - 11 [ exp( -i 2JN S&) - 11  + cc }. f i  
(3.16) 

In the slowly oscillating terms SKI can be replaced by the sum SK?+SK3.  After 
substitution of the definition of q53(S, T) (see (3.14)) and a rescaling of the integration 
variable we obtain the following result for the three-point function: 

(3.17) 

We can use the asymptotic values of 4 ( S ,  T) in (3.17). After rescaling the variables 
For small values of f i  only large values of S and T contribute to the integral. 

we obtain 

= n  (3.18) 
where we have used that the integral over S and T is equal to in'. 

The short-range behaviour of the four-point function can be derived in a similar 
fashion. In this case we need two sum rules corresponding to the two different locations 
of the poles of the Green functions in the complex plane. In the case with two poles 
on either side of the real axis we obtain 

( G v , ( E ) G v ? ( E ) E T , (  E)G..,>(E I ) ' =  (277ip)'N-' l , :dSIi:  dT / , :T rdU 

xd41(S, T, U i e x ~ { - p [ ( 7 7 ~ + 7 7 ~ ) S + ( ~ ~ + ~ ~ l T + ( 7 7 . , - 7 7 ~ ) U I I  (3.19) 
where 441(S, T, U )  is defined as 

x exp[iv5V(SK, + sK: - sKi - S K 4 ) ] .  (3.20) 
The second case with three poles on one side of the real axis and one on the other 
leads to the result 

(G,I(E)G,,(E)G,,(E)G vd(E) )c  = -(2.rripIJN ' I,' dS 1,: d T  i: d U  

x d4?( S, T, U ) ex pl - p  [ ( 7, + vJ 1 S + ( 77: + 77' i T + ( v7  + 77') U I} (3.2 1 ) 
where 442 is defined as 
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As in case of the three-point function, we can obtain the asymptotic result for 441 by 
equating equations (3.19) and (3.21) to equations ( 3 . 7 ~ )  and (3.76), respectively. We 
just quote the final result: 

( b 4 ) ( S j T , U ) + N / 8 d  S , T , U + ~ , U E [ O , S + T ]  (3.23 a )  

442(S, T, U ) +  N/8.rr3 S, T, U + oc. (3.236) 

In  equation ( 3 . 2 3 ~ )  the result for 44, is zero when U is outside the range [0, S +  TI .  
By using the sum rules we find that for small values of f i  the fourth cumulant converges 
to ii. Since no new features arise we omit the derivation of this result. 

I n  the derivation of the sum rules we have not used any special properties of the 
semiclassical expansion of the level density for integrable systems. Consequently very 
similar sum rules can be obtained for classically chaotic systems. 

4. The asymptotic limit of the two-point function 

I n  this section we evaluate the two-, three- and four-point functions from the semi- 
classical expression for the number of levels (equation (2.9)). For large N and 
f i  - O( N F ) ,  ( F arbitrarily small but larger than zero) we can approximate the product 
of the fast-oscillating cosines in the two-point function (Nf , , (  f i ,  N ) ) ,  as 

By using this result we obtain a very simple expression for the two-point function: 

(This result has also been obtained by Berry 1986.) For small values of ti this expression 
can be evaluated by replacing the summation by an integration from zero to E. After 
rescaling the integration variables we recover the result given in (3.12). However, we 
have not been careful enough: we should have replaced the summations by an integra- 
tion from ; to E, The difference can be estimated by putting one of the M ,  equal to 

and replacing the remaining summation by an integration. By rescaling the integration 
variable we find, for the behaviour of Z,( fi, N 1 for small f i ,  

(4.3) 

where a is a numerical constant of order unity. We conclude that the scale at which 
L ( t i ,  N )  starts deviating from the Poisson limit is given by ti-  N '  ' . By inspection 
of (4.2) we observe that X 2 (  f i ,  N )  saturates at a scale ti - NI '. Note that the summation 
over the M ,  in (4.2) is not uniformly convergent in ii so that we are not allowed to 
differentiate with respect to ti behind the summation. A priori we had not expected 
that the approximation (4.1 1 would give the right number variance for small values of 
ti. For ti - 1 the main contribution in the summation comes from a region with S,, - JN. 
The average distance of neighbouring S,, is l / d  N and therefore there are non-diagonal 
contributions on the left-hand side of equation (4.1 ) even in  the limit N + E. However, 
when ti-  N ' ,  ( F > O  but arbitrarily small) the approximation in (4.1) is valid in the 
limit N + E (and  also equation (4.3)). Because of (4.3), the linear behaviour of the 
number variance extends to a much larger region than justified by the derivation for 

I:( ii, N )  = ti - uti ' /v/" 
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the semiclassical sum rule in (3.11). Accordingly, the semiclassical sum rule can be 
extended to a classical sum rule which is valid for much smaller values of S (see Berry 
and Tabor (1977a, b) and Hannay and Ozorio de Almeida (1984)). 

In the study of the A3 statistic by Berry (1985) and Seligman and Verbaarschot 
(1987) the deviation from the linear behaviour appeared to be much less than that 
given by (4.3). This is obvious because, under the integral transform that relates the 
number variance and the A3 statistic, the - r i 2  term is transformed to zero (see (2.9) 
and (2.10)). All higher-order corrections to the A3 statistic will be suppressed by large 
numerical factors. 

For the evaluation of the three-point function (N:,,,(ri, N ) ) ,  we have to deal with 
the product of three fast-oscillating cosines. For large N only the terms for which the 
large phases cancel contribute: 

(4.4) 

The 6 function in (4.4) implies that 

Ki = k ( P l ,  P Z )  K ,  = I (P1, P A  K ,  = ( k +  M C L I  9 P2) (4.5) 
where k, I ,  m, pI and pcLz are integers with p i  and p2 relatively prime. By using (4.4) 
we can immediately write down the asymptotic result for the three-point function: 

(4.6) 

where the double-primed summation is subject to the constraints in (4.5). From its ri 
and N dependence it is clear that the asymptotic formula for C3( ii, N )  cannot converge 
to the Poisson limit for small ri. The only N-independent result that can be obtained 
from (4.6) is C3(ri ,  N )  - ri3’ , .  This is not in agreement with (3.19) and therefore the 
diagonal approximation (4.4) is not valid for small fi. 

We can estimate at which scale (4.4) is valid. For small ti the main contributions 
to (4.6) stem from terms with SK - J N / f i .  When we use that the number of terms 
SK, + SK2 E [S, S + dS]  is proportional to S3 we find the condition ii >> 

For the four-point function we need the average of four fast-oscillating cosines. 
The result, which does not include terms for which the arguments of the cosines are 
not pairwise equal, is 

(4.7) 
The term with the negative sign is a consequence of the non-zero cumulant of the 
cosine. The factor c o s ( f r )  = 0 results from the phase $T on the left-hand side of this 
equation. Consequently, the term containing this factor will not contribute to the 
four-point function. The constraint implicated by the first 6 function in (4.7) can be 
parametrised by the integers k,  1, m, pI  and p2 (the latter two integers are relatively 
prime) as 

- -2 B6K,+K2,K1+K, + f C O S ( ~ ~ ) ~ K , , K ~ + K ~ + K ~  -i~K,,KZ6K2,K36K,.K,~ 

K ,  = k ( P l 1  P2) K2 = l (Pl ,  P I )  K3 = m(P1,  Pz) 
(4.8) 

The last condition in (4.8) eliminates the correlations that can be written as the product 
of two two-point functions. The connected part of the four-point function follows 

K.4 = n ( l L , ,  P2) k + l = m + n  k #  m. 
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immediately from (4.7). The result is 

where the triple-primed summation refers the parametrisation given in (4.8). For the 
same reasons as in the case of the three-point function, the diagonal approximation 
(4.8) does not yield the correct short-range behaviour of &(A, N ) .  Only for A >> N"' 
d e  we expect this approximation to be valid. 

In the next section we will present numerical results for the two-, three- and 
four-point measures. 

5. Numerical results 

In our numerical calculations we proceed as follows. From equation (2.2) we generate 
a level sequence and order it. After unfolding it according to the prescription (2.7) 
we count the number of levels in consecutive intervals of length ii. By averaging over 
a part of the spectrum to be specified later on we obtain the lowest four cumulants 
E p ( i i ,  N ) .  This calculation becomes very time consuming for large values of 3. In 
order to obtain statistically reliable results we need a huge number of levels. The full 
circles in figures 1-6 represent the results from these calculations. The statistical errors, 
which have not been drawn, are equal to the statistical errors of the open circles. 

On the other hand we can calculate the cumulants Z,,( A, N )  from the semiclassical 
approximation (equation (2.1 1 ) )  for A ) .  We calculate N,,,( A, N )  in consecutive 
intervals of length ii and obtain the moments by averaging over a part of the spectrum. 
This calculation becomes very time consuming for small values of 3 because we have 
to use a very large cutoff for the summation over the lattice of integers. The results 
from these calculations are represented by the open circles in figures 1-7. The statistical 
errors have been calculated from the fluctuations of moments in neighbouring parts 
of the spectrum. In this way the systematic error due to the non-stationarity is 
eliminated. 

The short-range behaviour of the cumulants Z2( f i ,  N ) ,  Z7( fi, N )  and X4( A, N )  is 
shown in figures 1, 2 and 3, respectively. The ratio of (Y and p is (see equation (2.2)) 
in all cases equal to 4 ~ .  We show results for the square well ( sw)  and the homogeneous 
x4 potential. The result given by the full and open circles have been obtained from 
the 5000th up to the 15 000th level above the ground state. They coincide within the 
error bars. The lines in figures 1-3 are the results for a random sequence of levels (the 
Poisson limit). The curves in figures 2 and 3 represent the asymptotic result for the 
number moments as derived in $ 4  with the help of a diagonal approximation (see 
(4 .2) ,  (4.6) and (4.9)). Only for C 2  do we obtain the right answer in the semiclassical 
limit with the diagonal approximation. As argued before, the diagonal approximation 
does not give the right result for the short-range part of the higher cumulants. We 
also observe that even at a distance of only one level spacing the fluctuations are less 
than the Poisson limit. The square well differs more from the Poisson limit than the 
x4 potential. This is in agreement with the results of Casati et a1 (1985), Feingold 
(1985) and Seligman et a/ (1986) for the nearest-neighbour spacing distribution. In 
the semiclassical calculations the summation over the integers has been cut off at 600. 
To reduce the computation time we have extrapolated from the results with a cutoff 
at 400, 500 and 600. 
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Figure 1. The short-range behaviour of the number variance Z2( f i ,  N )  as a function of the 
average number of levels A in a given interval. We show results for ( a )  the homogeneous 
x4 potential and for ( b )  the square well (sw).  The ratio of a and p is equal to fn. The 
full  circles represent the results obtained from the exact level sequence and the open circles 
the results obtained from the semiclassical expression (2.11) for the 5000th up to the 
15 000th level. The Poisson limit is given by the upper line and the asymptotic limit for 
&(A, N )  (see equation (4 .2) )  by the lower one. 

0 1 .o 2.0 0 1 .o  2 .0  
ii n 

Figure 2. The short-range behaviour of the third cumulant 1 3 ( A ,  N )  as a function of the 
average number of levels ri in a given interval. In this figure the curve is obtained from 
the asymptotic result for the three-point function given by (4.6). For further explanation 
see the caption of figure I .  

The long-range behaviour of the cumulants &(ti, N ) ,  &(f i ,  N )  and Z4(fi, N )  is 
shown in figures 4,5 and 6, respectively. The homogeneous x4 potential and the square 
well have been investigated for ratios of a and p equal to f.rr and $ ( 6 + 1 ) .  The 
meaning of the full and open circles has already been discussed. They have been 
obtained from a spectral average over the 500000th up to the 1500000th level and 
coincide within the error bars. In this case the semiclassical calculations have been 
performed with a cutoff of 120. These results are compared to the asymptotic limit of 
the number moments Z,(fi, N )  (see (4.2), (4.6) and (4.9)). The broken curves have 
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0 1.0 2 . 0  0 1.0 2 . 0  
n n 

Figure 3. The short-range behaviour of the fourth cumulant of the number of levels X,( ti, N )  
as a function of the average number of levels ti in a given interval. In this figure the curve 
is obtained from the asymptotic result for the four-point function given in (4.9). For further 
explanation see the caption of figure 1 
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Figure 4. The long-range behaviour of the number variance Z2(fi, N )  as a function of the 
average number of levels ti in a given interval for ( a ) ,  ( c )  the x4 potential and ( b ) ,  ( d )  
the square well (sw). The ratio of a and p is equal to fn ( a ) ,  ( b )  and $tJ5+ l ) ( c ) ,  ( d ) .  
The full circles (results from the exact level sequence) and the open circles (results from 
(2.1 1 ) )  have been obtained from the 500 000th up to the 1500 000th level above the ground 
state. The broken curve gives the asymptotic result for the number variance (equation 
(4.2)) for N = lo6 and the full curve the spectral average of the asymptotic result. The full 
line represents the Poisson limit. 
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Figure 5. The  long-range behaviour of the third cumulant X3(ri, N )  as a function of the 
average number of levels A in a given interval. In this figure the broken curves and  the 
full curves have been obtained from the asymptotic result for the three-point function 
(equation (4.6)). For further explanation see the caption of figure 4. 

been calculated for a fixed value of N = 1000 000 and the full curves from an average 
over ten equidistant values of N in the range [500 000; 1500 0001. The fourth moment 
requires further discussion. In the exact calculation we subtract three times the square 
of the ensemble averaged second moment from the fourth moment. In the calculation 
of the asymptotic result we automatically subtract three times the square of the local 
average E*, (& N )  of the second moment (by the parametrisation given in (4.8)). 
Because of this we have to add  

to the semiclassical result (in our case k is equal to 10) in order to compare to the 
other data. This correction has been included in the full curves in figures 4, 5 and 6. 
In all cases we find perfect agreement of the asymptotic formula and  the other data. 

In figure 7 we show the semiclassical result for the four-point function obtained 
from the 0.5 x 10'th up to the 1.5 x 10Xth level above the ground state of an x4 potential 
with the ratio of a and p to $7. The curve represents the asymptotic expression 
for the four-point function at N = 10'. We obtain a perfect description of the data 
generated from (2.11) and the asymptotic formula (4.9) without a spectral average and 
without the correction term given in (5.1). Due to numerical limitations we are not 
able to present results obtained from the exact level sequence. 
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Figure 6.  The long-range behaviour of the fourth cumulant Z,( A, N )  as a function of the 
average number of levels ti in the interval. In this figure the broken curves and the full  
curves have been obtained from the asymptotic result for the four-point function (equation 
(4.9)). For further explanation see the caption of figure 4. 

6. Conclusions 

The basic conclusion of this paper is that the higher-order cumulants of the distribution 
of the number of levels in a given interval show large deviations from the Poisson 
limit. The three- and four-point cumulants of the number of levels in intervals of 
intermediate length show much larger fluctuations than in the Poisson limit. For 
intervals of asymptotically large length the magnitude of the fluctuations saturates. 
This has been supported by both analytical and  numerical evidence from scale invariant 
systems. For arbitrary bound systems with a Hamiltonian given by the sum of a kinetic 
and potential energy we expect a similar behaviour; the structure of the semiclassical 
expansion does not depend on the details of the integrable system. Moreover, when 
the potential is a polynomial only the highest-order monomials are of importance in 
the region far above the ground state. 

As in the case of the A, statistic, the short-range behaviour of cumulants could be 
obtained with the help of semiclassical sum rules. In deriving these sum rules we have 
not used any details of the semiclassical periodic orbit sum. Therefore similar sum 
rules will be valid for the expansion coefficients and the phases of non-integrable 
syct L) ems. 

We have also obtained explicit expressions for the long-range behaviour of the 
second, third and  fourth cumulants by taking into account only those terms for which 
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Figure 7. The long-range behaviour of the fourth cumulant &(A, N i  as  a function of the 
average number of levels f i  in a given interval for the xJ potential with the ratio of U and  
p equal to :n. The open circles have been obtained from the semiclassical result (2.11) 
by using results for 0.95 x loath level up to the 1.05 x 10Xth level. In  this figure the curve 
is obtained from the asymptotic result for the four-point function at  N = 10’ (see (4.9)) .  

the fast-oscillating exponents cancel. This procedure is not valid when the length of 
the interval ii (in units of the average level spacing) is small. The result for the second 
cumulant is not valid below a scale of i i -  1 and the result for the third and fourth 
cumulants is not valid below a scale of ii - N”’ and ii - N’ ’, respectively ( N  is the 
distance above the ground state measured in units of the average level spacing). From 
the explicit expressions we have reached the following conclusions. The scale at which 
the fluctuations no longer increase is given by ii - V’ N. The Poisson limit is well 
approximated in  a region with ii<< NI’?. The devidtion of the second cumulant from 
the Poisson limit is proportional to - i i ’ / d ” .  For the higher-order cumulants we expect 
similar corrections. The quadratic correction is not present in the A ?  statistic. The 
reason is that the A I  statistic is related to the number variance by a linear integral 
transform with a non-trivial kernel. All these results have been confirmed by numerical 
evidence. 

The asymptotic results for higher-order correlation functions might be of importance 
in the study of molecular spectra where a large number of levels can be obtained (see, 
e.g., Levandier et a1 1986). In  particular, the large fluctuations in  the three- and 
four-point functions might be helpful to distinguish integrable from chaotic systems. 
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